Gene expression profiling of PBL in response to ionising radiation and modeled microgravity

BACKGROUND: Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity a condition of weightlessness experienced by astronauts during space missions which could have a synergistic action on cells increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of gamma-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover let-7i miR-7 miR-7-1 miR-27a miR-144 miR-200a miR-598 miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles carried out on PBL of the same donors identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of Response to DNA damage is enriched when PBL are incubated in 1 g but not in MMG. Moreover some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE: On the whole by integrating the transcriptome and microRNome we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. Overall Design: Gene expression signature was defined in PBL irradiated with gamma-rays (2.0 Gy) and incubated in modeled microgravity (mmg) and in parallel ground conditions (1g) for 24h. Five independent experiments were performed for each donor to address which mRNAs were regulated on IR stress. The level of each transcript was represented as Log2.

Data and Resources

Additional Info

Field Value
Maintainer GeneLab Outreach
Last Updated April 23, 2025, 19:59 (UTC)
Created February 19, 2025, 02:32 (UTC)
accessLevel public
accrualPeriodicity irregular
bureauCode {026:00}
catalog_@context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
catalog_@id https://data.nasa.gov/data.json
catalog_conformsTo https://project-open-data.cio.gov/v1.1/schema
catalog_describedBy https://project-open-data.cio.gov/v1.1/schema/catalog.json
harvest_object_id a3b45728-41cc-4df6-8845-1322d1b09ae5
harvest_source_id b37e5849-07d2-41cd-8bb6-c6e83fc98f2d
harvest_source_title DNG Legacy Data
identifier nasa_genelab_GLDS-129_84ea-fpze
issued 2021-05-21
landingPage https://data.nasa.gov/dataset/gene-expression-profiling-of-pbl-in-response-to-ionising-radiation-and-modeled-microgravit
license http://www.usa.gov/publicdomain/label/1.0/
modified 2023-01-26
programCode {026:005}
publisher National Aeronautics and Space Administration
resource-type Dataset
source_datajson_identifier true
source_hash 0550e5c666e9f1137cf4b4f98f66553d5a219351d61acb965690e33134234841
source_schema_version 1.1
theme {"Earth Science"}