The Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint One Degree (SSF1deg) Hour provides regional averages of CERES Top of Atmosphere (TOA) fluxes, clouds derived from a co-located imager and aerosols on a 1-degree latitude and longitude grid. This single satellite product uses the primary CERES instrument in cross-track mode. TOA fluxes are provided for clear-sky and all-sky conditions for longwave (LW), shortwave (SW), and window wavelength bands. The incoming daily solar irradiance is from the Solar Radiation and Climate Experiment (SORCE) and Total Solar Irradiance (TSI). The cloud properties are averaged for day and night (24-hour) and day-only periods. Cloud properties are stratified into four atmospheric layers (surface-700 hPa, 700 hPa - 500 hPa, 500 hPa - 300 hPa, 300 hPa - 100 hPa) and a total of all layers. The aerosols are averaged instantaneous values from the co-located imager. CERES is a key Earth Observing System (EOS) program component. The CERES instruments provide radiometric measurements of the Earth's atmosphere from three broadband channels. The CERES missions follow the successful Earth Radiation Budget Experiment (ERBE) mission. The first CERES instrument (PFM) was launched on November 27, 1997, as part of the Tropical Rainfall Measuring Mission (TRMM). Two CERES instruments (FM1 and FM2) were launched into polar orbit on board the EOS flagship Terra on December 18, 1999. Two additional CERES instruments (FM3 and FM4) were launched on board EOS Aqua on May 4, 2002. The CERES instrument (FM5) was launched on board the Suomi National Polar-orbiting Partnership (NPP) satellite on October 28, 2011. The newest CERES instrument (FM6) was launched on board the Joint Polar-Orbiting Satellite System 1 (JPSS-1) satellite on November 18, 2017.